
SIP LEX

SIP Malformed Message detection

Raihana Ferdous

University of Trento, Italy

January, 2012

Abstract

Detection and prevention of SIP malformed messages has become an important

indicator of high availability VoIP systems. This paper describes possible SIP mal-

formed messages attacks and builds a malformed message detection system. It

focuses on achieving high detecting accuracy and at the same time low process-

ing overhead. SIP LEX, lexical analyzer for SIP messages, is implemented for

parsing incoming SIP messages in the system to identify the malformed messages.

Experiments over synthetic traces demonstrate the efficiency of SIP LEX in SIP

malformed messages detection.

cap. 1 · Introduction

Chapter 1

Introduction

Voice over IP is one of the commercially most important emerging trends in mul-

timedia communications over IP. Network Operators, Consumers and Enterprises

are rapidly adopting voice-over-IP (VoIP) technologies for multimedia communi-

cation as it provides higher flexibility and more features than traditional telephony

infrastructures. VoIP services are generally based on standard protocols for sig-

naling (i.e., SIP, H.323, and MGCP) and transporting media albeit proprietary

solutions like Skinny by Cisco and the Open Source IAX adopted by Asterisk

project are very popular in enterprise solutions.

SIP (Session Initiation Protocol) is the application layer signaling protocol used

for managing multimedia sessions by the most major telecommunication operators.

SIP based IP telephony network opens new perspective in telephony arena through

its flexibility in call generation, possibility of multiple calls from same URL and

low cost. SIP [11] is a text-based application layer signaling protocol standardized

by the Internet Engineering Task Force (IETF), and it is designed to support the

establishment, maintenance, modification, and termination of multimedia sessions

including, but not limited to, IP telephony, video/voice-conference and instant

messaging.

As the popularity of VoIP and its deployment grows, it also becomes the target

of hackers and crackers. Although SIP received a big interest from the telecommu-

nication community, it threats administrators with significant security challenges.

Basically the open architecture of the Internet, heterogeneous environment of VoIP

network, use of multiple protocols and the lack of a separated, secure signaling and

control plane make the VoIP applications more vulnerable to attacks than tradi-

2

tional architectures.

Though secure transport-layer protocols such as Transport Layer Security (TLS)

or Secure RTP (SRTP) have been standardized, they have not been fully imple-

mented and deployed in current VoIP applications because of the overheads of

implementation and performance. Moreover, both SIP protocol implementations

and network applications are often not fully comply with underlying standards (e.g.

RFCs) or they contain development errors in the source implementation code. As a

result there are implementation errors that may pollute a network with incorrectly

formed packets and lead to unstable conditions. Furthermore, standard protocol

implementations usually focus on well-formed messages without considering any

defense tactic against malformed messages. ’Malformed message’ is referred to any

type of invalid or non-standard message, skillfully formed by an attacker in order

to exploit and eventually take advantage of any implementation gap or dysfunction

might exist in the target system. The victim of malformed message attack is unable

to process those message resulting to various undesired situations like crashing the

VoIP server and creating Denial of Service (DoS) phenomena. The security threats

introduced by malformed message attacks are should be properly understood and

development of an efficient malformed message detection mechanism is necessary

in order to protect VoIP infrastructures.

Existing work on SIP malformed message detection includes signature-based

detection algorithm and machine learning based approaches. Signature-based

anomalous message detection system [5] is not suitable for fast processing of large

data set. On the other hand, existing machine learning based malformed message

detection system [9, 7] suffers the problem of ’curse of dimentionality’ in represent-

ing SIP message in feature space. Moreover, they also fail to detect shopsticated

SIP malformed messages.

In this proposal, we focus on reducing the time complexity and increasing the

accuracy of malformed message detection system. We have used machine learning

techniques for categorizing SIP messages. In order to increase the accuary of

classification, SIP messages are represented into structured data structure, such

as syntactic parse tree. This structured representation is significant in identifying

shopsticated SIP malformed messages as it contains syntactic information of a

SIP message. For classification, tree kernel methods are used on structured SIP

messages along with Support Vector Machine [13, 3] , one of the standard tools for

3

cap. 1 · Introduction

machine learning and data mining, which delivers excellent performance in real-

world applications such as text categorisation, hand-written character recognition,

image classification, biosequences analysis, etc. The advantage of using kernel

methods is that we can avoid feature representation problem which is known as

’curse of dimentionality’ problem. This is because kernel methods avoid explicit

representation of data into feature space and measure the similarity between two

structued objects based on the common sub-parts. Experimental results illustrate

the efficiency of using tree kernel for SIP malformed message detection on a large

set of SIP messages.

The rest of the document is organized as following: Section 2 presents the State

of the Art of the research, Section 3 describes SIP malformed message attack,

Section 4 represents the proposed malformed message detection system, Section 5

presents our efforts and preliminary results of the proposed system and Section ??

indicates our future works and concludes this paper.

4

Chapter 2

State of the Art

Classic IDS system like SNORT [10] usually attempts to describe all possible ma-

licious messages by storing their signatures in a static signature database. After-

wards, every network stream is examined against all stored signatures or rules for

possible matches. Such an approach lacks flexibility and scalability.

On the contrary, this [5] malformed message detection mechanism adopts the

opposite approach. They define a specific ’signature’ considering the syntax of

well-formed SIP message defined in he standard [11] and, thus, any message that

does not comply with that ’signature’ must be discarded as ’malformed’ message.

The authors show that this approach is far more efficient in recognizing mal-

formed messages. The computational complexity of signature-based malformed

message detection system depends on the number of rule/signature in the signa-

ture database. Thus signature-based systems may become inefficient for large set

of SIP messages.

SIP being a text-based protocol, its content can be described in terms of tex-

tual tokens and words, thus, can be characterized by frequencies of contained

substrings. This opens the possibility of considering the problem of SIP mal-

formed message identification as a text classification problem and applying Ma-

chine Learning methods for text classification to solve this problem. [9] considered

SIP malformed message detection problem as a text categorization problem and to

solve this problem each SIP messages is mapped to a feature vector and identifies

anomalous content by determining deviation from a model of normality. Thus,

representation of SIP messages using a set of features may have two shortcomings,

(i) identification of important features to characterize SIP message is complicated,

5

cap. 2 · State of the Art

and (ii) it may require too many feature which introduces the problem of ’curse of

dimensionality’.

Kernel methods can be used to avoid major feature representation problems

as kernel methods allow us to express the similarity between two objects without

explicitly defining their feature space. Moreover, kernel methods are widely used to

extend the applicability of traditional classification methods (e.g., Support Vector

Machine, Principal component analysis, etc). The idea of using kernel methods

for SIP malformed message detection introduces two different, but related lines of

research.

First, incoming SIP messages are required to be transformed into data-structure

that is applicable for learning/classification algorithms. As we intend to detect

syntactic errors of SIP messages, so messages should be represented in suitable

data structure that includes the syntactic information of SIP messages.

Second, the computational complexity of kernel evaluation does not depend

on the size of the feature space but on the complexity of the kernel function. So

identification of suitable kernel function for this problem is complicated. A fast and

efficient kernel method should be used for this problem to fulfill the requirement

of on-line malformed message identification.

6

Chapter 3

SIP Malformed Message Attack

This section discusses possible SIP malformed message [12].

• Missing of Mandatory field - For each SIP message there are some manda-

tory fields. A SIP message can be considered as ’malfored’ due to lack of

any of those fields. Figure 3.1 shows an example of malformed SIP INVITE

message where mandatory field ’To’ is missing.

Figure 3.1: SIP INVITE malfored message where mandatory field ’To’
is missing.

• Duplicate entry of unique field - SIP message headers must have contain

some fields which are both marked mandatory and unique. Consequently, if

any of these headers appears more than once at the incoming SIP message,

then this message must be considered as malicious. Figure 3.2 shows an

example of malformed SIP INVITE message where mandatory field ’To’ is

missing.

7

cap. 3 · SIP Malformed Message Attack

Figure 3.2: SIP INVITE malfored message where mandatory and
unique field ’CSeq’ appears twice.

• Error in header format - Each header of SIP message has specific structure

which must be followed. Header fields that do not match with SIP grammar

must be considered as malicious. Figure 3.3 and 3.4 shows examples of

malformed SIP INVITE message where the message format of mandatory

field ’CSeq’ is wrong.

Figure 3.3: Syntax error in ’From’ header field in SIP INVITE message.

• Error in hierarchical structure of SIP message - For all messages, the

general format is:

A start line

One or more header fields

8

Figure 3.4: Syntax error in ’From’ header field in SIP INVITE message.

An empty line

A message body (optional)

Any SIP message that does not follow above general structure can be con-

siderd as malformed. Figure 3.5 shows an example of such malformed SIP

INVITE message. Hierarchical structure of well-formed SIP message is not

Figure 3.5: Error in hierarchical structure of SIP message.

followed in SIP message of figure 3.5 as mandatory header field ’To’ comes

after message body.

• Null entry for any mandatory field - A SIP message can be considered

as malfored having ’Null’ entry in any of the mandatory fields. Figure 3.6

9

cap. 3 · SIP Malformed Message Attack

shows an example of malformed SIP INVITE message where mandatory field

’To’ is missing.

Figure 3.6: SIP INVITE malfored message where valude of mandatory
field ’To’ is ’null’.

• Presence of large formatted string/ansi-escape character/invalid

UTF-8 sequences - Large sequences of formatted strings/ansi-escape char-

acter/invalid UTF-8 sequences can cause buffer overflow in the SIP server.

Figure 3.7 and 3.8 shows an example of SIP messages with large sequence of

formatted string/ansi-escape character/invalid UTF-8 sequences.

Figure 3.7: SIP malfored message where large sequence of unnecessary
character has appeared.

Figure 3.6 shows an example of malformed SIP INVITE message where

mandatory field ’To’ is missing.

• SQL message injection - Another case that can be seen as a malformed

message attack is that of SIP messages embedding SQL code in their autho-

rization header as illustrated in Figure 3.9.

10

Figure 3.8: SIP malfored message where large sequence of unnecessary
character has appeared.

Figure 3.9: Example of a malformed message that contains SQL code.

11

cap. 4 · Kernel methods for SIP malformed message detection

Chapter 4

Kernel methods for SIP

malformed message detection

The goal of this work is to develop a fast and efficient SIP malformed messages

detection system. Description of the proposed system is illustrated in the following

sub-sections.

4.1 Structured representation of SIP messages

SIP being a text-based protocol, malformed message classification problem can be

considered as a text categorization problem. In text categorization (TC) systems

machine learning techniques are applied to documents represented by term vectors

(i.e.bag-of-words representation), which is still the most popular choice in text

mining tasks. According to these models, the input documents are encoded as

vectors whose dimensions correspond to the terms in the overall training corpus.

The inner product (or the cosine) between two such vectors is used as kernel hence

making the similarity of two documents dependant only on the amount of terms

they share.

[9] applied this method of text classification to solve the problem of SIP mal-

formed message identification. The authors mapped SIP messages to a feature

vector and identifies anomalous content by determining deviation from a model

of normality. A set of sub-strings/terms S is defined to model the content of SIP

messages and this set S is called the “feature-set”. Given a feature string s∈S

and a SIP message x, the number of occurrences of the feature s in message x

12

4.1 Structured representation of SIP messages

can be determined. SIP messages are embedded into feature space where mes-

sages are expresses by feature s∈S and its frequencies. For instance, figure 4.1(a)

shows an example of well formed SIP INVITE message. In the INVITE mes-

Figure 4.1: SIP INVITE message.

sage in figure 4.1(a), a set of features can be defined where “To”, “From”, “SIP”,

“Via”, “Max-Forwards”, “Call-ID”, “CSeq”, and “Contact” can be considered the

most significant terms/features. After embedding to feature space, SIP INVITE

message of figure 4.1(a) can be represented as in figure 4.1(b).

However, this flat-representation (e.g., bag-of-words) of SIP messages is not

suitable for classifying SIP malformed messages. One of the main shortcomings of

this kind of representation is that it fails to encode the syntactic structure of the

input text and generally too many terms/features are required to represent the

input text. For instance, detection of malformed message where the hierarchical

structure of SIP message structure does not follow (e.g., figure 3.5 in section 3)

will not possible with malformed message detection system proposed in [9].

For identification of sophisticated SIP malformed message, we need more com-

plex and non-linear data structure that can model syntactic information of incom-

ing SIP messages. Syntactic parse tree, an ordered, rooted tree that represents the

syntactic structure of a string according to some formal grammar, can be consid-

ered the most significant structured representation of SIP messages. SIP messages

structure is defined in RFC 3261 [11] using Augmented BackusNaur Form (ABNF)

[4] which is capable of describing the syntax of languages used in computing, such

as communication protocols. Here, each node with its children is associated with

a SIP message rule defined in SIP standard [11]. Leaves of parse tree are the

13

cap. 4 · Kernel methods for SIP malformed message detection

terms/words from the incoming SIP messages. For example, figure 4.2 illustrates

the syntactic parse tree of a well-formed SIP INVITE message defined in SIP

standard [11].

Figure 4.2: Parse tree of a well-formed SIP INVITE message according
to SIP grammar [11].

4.2 Kernel method for SIP malformed message

detection

After representation of incoming SIP messages into structured data-structure like

parse trees, efficient classification algorithm should be applied for malformed mes-

sage classification. Classifiers are not generally designed in order to apply to

structured data, thus, classical machine learning approaches attempt to represent

structural objects (e.g., tree, graph) by using a flat feature representation, i.e.

attribute-value vectors. However, this raises two problems,

• Identifying proper features to represent structural properties is complecated

14

4.2 Kernel method for SIP malformed message detection

and is prone to loss of relevant information.

• It may be computational demanding as it may require too many features to

represent structured data.

To solve this problem, kernel method for stuctured data can be used which is

able to express the similarity between two structured objects without explicitly

defining their feature space. As a result we do not have major feature represen-

tation problems. Tree Kernels have been proposed as a powerful framework to

exploit structured data such as parse trees of the input texts and are widely used

for natureal language processing (NLP). Particularly, convolution kernel frame-

work proposed in [6] is the most popular methodologies for designing kernels for

structured data such as trees. Convolution kernels are based on the idea that a

complex object can be described in terms of its constituent parts, for example a

tree can be described in terms of its subtrees, thus, a convolution kernel measures

the similarity of two objects in terms of the similarities of their subparts. For

instance, measuring the similarity between the parse trees of two noun phrases: “a

dog” and “a cat” can be computed using convolution kernel methods. Syntactic

parse trees for these two phrases are found in figure 4.3. Figure 4.3 represents all

the substructures of the two parse “a dog” and “a cat”. It is found that only 3

structures (out of 5) are completely identical between two parse trees, and, thus,

the similarity is equal to 3.

Figure 4.3: Syntactic parse trees for natural languages (a)’a cat’, (b)’a
dog’.

15

cap. 4 · Kernel methods for SIP malformed message detection

4.2.1 Tree Kernel

The tree kernel proposed in [2] have been designed based on the idea of representing

trees in terms of all their substructures (fragments). The job of the kernel function

is then to efficiently count the number of tree substructures that are common to

both argument trees.

Let’s consider a T1 and T2 are two trees in which m different sub-trees (frag-

ments) are present. Here, the sub-trees are identified as features and each feature,

i.e. subset tree1, can be indexed by an integer between 1 and m. So, the feature

space can be defined as: F = {f1, f2,, fm}.
Each tree is represented by a m dimensional vector where the ith component

counts the number of occurrences of the ith sub-tree. To count the frequency of

sub-trees in the tree the function h (T) can be defined which represents the number

of occurrences of the ith tree fragment in tree a tree T. Now, trees T1 and T2 can

be represented as feature vectors φ (T1) and φ (T2), where,

φ (T1) = [h1 (T1) , h2 (T1) , h3 (T1) ,, hm (T1)]

φ (T2) = [h1 (T2) , h2 (T2) , h3 (T2) ,, hm (T2)]

The inner product between two trees T1 and T2 under the representation φ (T1)

and φ (T2) can be defined as:

K (T1, T2) = φ (T1) · φ (T2) =
i=1∑
m

[hi (T1) · hi (T2)] (4.1)

Thus the sub-tree kernel (ST) defines a similarity measure between trees which

is proportional to the number of shared subset trees. [2] proposed a dynamic

programming algorithm that computes the inner product between two trees in

polynomial (in the size of the trees involved) time.

We first define the set of nodes in trees T1 and T2 as NT1 and NT2 respectively.

The Indicator function is Ii (n) and can be defined as:

Ii (n) =

{
1 ; if sub-tree i is seen rooted at node n

0 ; otherwise

1Sub-Tree: A sub-tree (ST) is any node of a tree along with all its descendants.

16

4.2 Kernel method for SIP malformed message detection

It follows that:

hi (T1) =
∑

n1∈NT1

Ii (n1)

and

hi (T2) =
∑

n2∈NT2

Ii (n2)

Substituting hi (T1) and hi (T2) the kernel function of equation 4.1 can be written

as below:

K (T1, T2) =
i=1∑
m

[hi (T1) · hi (T2)] (4.2)

=
i=1∑
m

∑
n1∈NT1

Ii (n1)
∑

n2∈NT2

Ii (n2) (4.3)

=
∑

n1∈NT1

∑
n2∈NT2

i=1∑
m

Ii (n1) Ii (n2) (4.4)

=
∑

n1∈NT1

∑
n2∈NT2

∆ (n1, n2) (4.5)

Author of [2, 8] provide a recursive deifinition for computing ∆ (n1, n2) in natural

language processing. For efficiently computing ∆ (n1, n2) we modified the recursive

algorithm proposed in [2, 8], as here tree kernel are used for pattern analysis of

SIP message where leaf nodes are also included. The definition for computing

Delta (n1, n2) is given below:

• If the productions(number of children) at n1 and n2 are different, then

∆ (n1, n2) = 0.

• If n1 and n2 are leaves and their associated symbols are equal, then ∆ (n1, n2)

= 1.

• Else if the productions at n1 and n2 are the same and n1 and n2 are not

leaves, then

∆ (n1, n2) =

j∏
nc(n1)

∆
(
cn1
j , c

n2
j

)
17

cap. 4 · Kernel methods for SIP malformed message detection

Here, nc(n1) is the number of children of node n1 in the tree T1; because the

productions at n1/n2 are the same, so we have, nc(n1) = nc(n2). Again, cn1
j

is the jth child-node of n1.

By recursively applying these above rules, it can be concluded whether the sub-tree

rooted at n1 and n2 are identical or not.

4.2.2 Fast Tree Kernel

Tree kernel proposed in [2] compute the kernel by summing the ∆ (n1, n2) function

for each pair 〈n1, n2〉 ∈ NT1 ×NT2 of equation 4.5. The computational complexity

of this [2] tree kernel is O (|NT1| × |NT2|) and it is really high for large trees.

To reduce the computational complexity of kernel evalutation, [8] slightly mod-

ified the kernel function proposed in [2] and proposes an algorithm for the evalu-

ation of the tree kernel which runs in linear average time. [8] proposes to avoid

the evaluation of ∆ (n1, n2) function (equation 4.5) when the productions associ-

ated with n1 and n2 are different, since it is 0. This fast algorithm computes the

kernels between two syntactic parse trees in O (m+ n) average time, where m and

n are the number of nodes in the two trees. The fast algorithm proposed in [8]

proves effective for natural language processing. To make tree kernels suitable for

SIP messages classification and to reduce the time complexity of kernel evaluation

following methodologies can be applied:

• The basic idea of tree kernels is to measure the similarity of fragments of

trees where fragments can be subtrees or subset-trees. A sub-tree (ST) is

any node of a tree along with all its descendants. A subset-tree (SST) is a

more general structure since its leaves can be non-terminal symbols. Figure

4.4 shows the parse tree of the sentence “Mary brought a cat” together with

its 6 sub-trees (ST) figure 4.4(a) and 10 subset trees/SST (out of 17) figure

4.4(b). For using tree kernels in natural language processing [2, 8], either

sub-trees or subset-trees can be considered as fragments of a tree. In case of

using tree kernels for SIP malformed message identification, sub-trees would

be suitable fragments to be considered. Though subset-trees provide learning

algorithms with richer information but too many irrelevant subset-trees also

may occur overfitting and may decrease the classification accuracy.

18

4.2 Kernel method for SIP malformed message detection

Figure 4.4: (a)Sub-trees and (b)Subset-trees of a parse tree.

• Every incoming SIP message is represented into syntactic tree. In our prob-

lem domain, all we need to identify syntactic trees that does not match SIP

grammar. So, we do not need to consider all possible sub-trees for every two

trees in the dataset. Instead, a set of most significant sub-trees from syntac-

tic tree of a well-formed SIP message can be defined and kernel evaluation

between syntactic trees (incoming SIP messages) can be acomplished based

on these pre-defined sub-trees. Consideration of only m sub-trees (m ∈ N ,

where N = all possible subtrees of tree T1 and T2), reduces the time com-

plexity of kernel evaluation.

19

cap. 4 · Kernel methods for SIP malformed message detection

4.2.3 Example of Tree Kernel for SIP malformed message

detection

This section describes an example of detecting SIP malformed message using our

proposed methodology. For simplicity, all examples of SIP INVITE messages in

this sub-section follow only the basic mandatory structure (optional header fields

and SIP message body are ignored) in this example. Parse tree of a well-formed SIP

INVITE message is shown in figure 4.5. In figure 4.5, leaves include well-formed

Figure 4.5: Parse tree of a well-formed SIP INVITE message according
to SIP grammar in RFC 3261[11].

structures of pre-terminal (node associated with leave nodes) fields. For instance,

leave “CSeq Header Format” which is associated with pre-terminal “CSeq”, ex-

presses structure of the well-formed “CSeq” header in a SIP INVITE message. The

parse tree of “CSeq Header Format” in figure 4.6 is formed following SIP grammar

20

4.2 Kernel method for SIP malformed message detection

defined using Augmented BackusNaur Form (ABNF) [4]. Grammar of all headers

Figure 4.6: Parse tree of a well-formed “CSeq Header Format”.

are found in [11]. Parse tree of an incoming SIP invite message is shown in figure

4.7 where leaves of the tree are the terms/words from the incoming SIP messages.

After representation of SIP messages into syntactic trees, tree kernel can be ap-

plied on both trees for measuring the similarity between them. Here, parse tree of

figure 4.5 can be defined as T1 and parse tree of incoming SIP message of figure 4.7

is T2. As described in previous section 4.2.2, instead of considering all sub-trees

of tree T1 and T2, a set of defined sub-trees we will considered for computing the

kernel function. Figure 4.8 shows the set of sub-trees which is defined considering

the SIP message syntax defined in [11].

Tree kernel can measure the similarity between two trees T1 and T2 by counting

the number of sub-trees (defined in figure 4.8) they share. It is found that, trees

T1 and T2 are not identical as they do not share all the sub-trees (sub-tree t8

and sub-tree t10 does not match). As tree T1 is formed according to SIP message

structure [11] and tree T2 does not match with tree T1, thus, we can conclude tree

T2 is a malformed SIP INVITE message. SIP messages of tree T2 contains error

in mandatory header fields ’To’ and ’CSeq’. Figure 4.9 represents trees T1 and T2

into feature vectors where features are the sub-trees defined in figure 4.8.

In this way, our proposed malformed detection system transforms a huge amout

of incoming SIP messages into feature vectors and then using Support Vector

21

cap. 4 · Kernel methods for SIP malformed message detection

Figure 4.7: An incoming SIP message is transformed into a parse tree.

Machine classifies into two categories, (i) well-formed, and (ii) malformed.

4.3 Architecture and Implementation of SIP mal-

formed message detection system

The implemented SIP malformed message detection system is defined as SIP LEX.

It includes a lexical analyzer followed by support vector machine. The lexical

analyzer examines the incoming SIP traces and discard syntactically incorrect

SIP messages. The rest of the syntactically valid SIP messages are passed to a

another classifier which used support vector machine and kernel methods. LibSVM

[1], a Library for Support Vector Machines, is used for classification. This second

classifier identifies messages that are syntactically valid but are malformed. Figure

?? represents the working block of SIP LEX.

22

4.3 Architecture and Implementation of SIP malformed message detection system

Figure 4.8: Set of sub-trees for evaluation of kernel function over struc-
tured SIP messages.

23

cap. 4 · Kernel methods for SIP malformed message detection

Figure 4.9: Tree T1 and T2 represented in feature space.

Figure 4.10: Architecture of SIP LEX.

24

Chapter 5

Experiments and Results

This section describes the performance of LEX SIP. Our goal is to maximize detec-

tion accuracy of SIP malformed message and at the same time to reduce messsage

processing time. Infact, time complexity plays a vital role in measuring the effec-

tiveness of an intrusion detection system in a real-time environment like VoIP.

5.1 DataSet

Performance evaluation of LEX SIP relies on large scale of SIP traces (individual

SIP request/response messages engaged in a session). But reliable real world VoIP

traces are not always available as VoIP providers are not willing to distribute their

data due to user privacy agreements. Moreover, VoIP traces with attack infor-

mation are not so frequent. Considering this situation, we developed a Synthetic

generator ’SIP-Msg-Gen’ for generating SIP traces. ’SIP-Msg-Gen’ is capable of

generating SIP malformed messages following the SIP torture test messages de-

fined in RFC 4475 [12]. Scenarios for malformed messages generated by synthetic

generator for performance evaluation are found in table 5.1. Possitive examples

are generated following well-formed SIP message structure defined in RFC 3261

[11].

25

cap. 5 · Experiments and Results

Table 5.1: Malformed messages generated by synthetic generator

Scenario 1 : Error in Request line
Scenario 2 : Syntax error in one mandatory header field
Scenario 3 : Syntax error in multiple mandatory header field
Scenario 4 : Syntax error in optional header field
Scenario 5 : Syntax error in message body
Scenario 6 : Missing mandatory header field
Scenario 7 : Duplicate entry for unique header field
Scenario 8 : Missing empty line after header fields
Scenario 9 : Presence of garbage string/invalid character in message
Scenario 10 : Hierarchical disorder of message structure
Scenario 11 : Negative value for mandatory field ’CSeq’ or ’Max-Forward’
Scenario 12 : Invalid method name
Scenario 13 : Message Body with unknown Content-Type
Scenario 14 : Unknown Authorization/Accept scheme
Scenario 15 : Message with outrange values for scaler fields
Scenario 16 : Message with multiple request method

5.2 Performance Evaluation - Efficiency of LEX SIP

Efficiency of LEX SIP is evaluated by examining the results achieved from LEX SIP

for SIP messages defined in RFC 4475 [12]. RFC 4475 [12] does not attempt to

catalog every way to make an invalid message, instead it tries to focus on areas

that have caused interoperability problems or that have particularly unfavorable

characteristics if they are handled improperly. Following subsections summarize

experimental results of LEX SIP for messages defined in RFC 4475.

5.2.1 Valid Message - SIP torture messages

RFC 4475 [12] defines various SIP test messages which are valid but only design

to “torture” the malformed message detector. A sample SIP “torture” message is

found in table 5.2 and also the results of LEX SIP for this message. The sample

message (table 5.2) contains :

• Escaped characters within quotes.

• An empty subject.

26

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.2: INVITE with Invalid Via and Contact Headers

SIP Message Type LEX SIP
INVITE sip:vivekg@chair-
dnrc.example.com;unknownparam SIP/2.0
TO : sip:vivekg@chair-dnrc.example.com ; tag =
1918181833n
from : “J. Rosenberg””
<sip:jdrosen@example.com> ; tag = 98asjd8
MaX-fOrWaRdS: 0068
Call-ID: 0ha0isndaksdj@192.0.2.1 Valid Valid
Content-Length : 151
cseq: 0009 INVITE
Via : SIP / 2.0 /UDP 192.0.2.2;branch=390skdjuw
s :
NewFangledHeader: newfangled value continued
newfangled value
UnknownHeaderWithUnusualValue: ;;,,;;,;
Content-Type: application/sdp
v: SIP / 2.0 /TCP spindle.example.com ; branch
= z9hG4bK9ikj8 , SIP / 2.0 / UDP 192.168.255.11;
branch=9hG4bK30239
m:“user%”” ¡sip:jdrosen@example.com¿ ; new-
param = newvalue ; secondparam ; q = 0.33
v=0
o=mhandley 29739 7272939 IN IP4 192.0.2.3
s=-
m=audio 492170 RTP/AVP 0 12

• LWS (Linear White Space) between colons, semicolons, header field values,

and other fields.

• Mix or short and long form for the same header field name.

• Unknown header fields.

• Unusual header field ordering.

• Unusual header field name character case/ unknown parameters of a known

header field/ uri parameter with no value/ header parameter with no value.

• Integer fields (Max-Forwards and CSeq) with leading zeros

27

cap. 5 · Experiments and Results

Table 5.3: INVITE with Invalid Via and Contact Headers

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: sip:j.user@example.com
From: sip:caller@example.net;tag=134161461246
Max-Forwards: 7
Call-ID: badinv01.0ha0isndaksdjasdf3234nas Malformed Malformed
CSeq: 8 INVITE
Via: SIP/2.0/UDP 192.0.2.15;;,;,,
Contact: “Joe” <sip:joe@example.org>;;;;
Content-Length: 153
Content-Type: application/sdp

5.2.2 Invalid Message - Syntectically Invalid

RFC 4475 [12] mentions various examples and clearly calls out what makes any

message invalid/incorrect.

Extraneous header field separators

Presence of extraneous header field separators (e.g., comma & semicolon without

any tag parameter) in any header field makes the message syntactically invalid.

Any server receiving this request should respond with a 400 Bad Request error.

An invalid message with extraneous header field separators is shown in table 5.3

where the Via and Contact header fields of this request contain contain additional

semicolons and commas without parameters or values.

Negative/non-numeric value for Content-Length

A SIP INVITE message with a negative/non-numeric value for Content-Length is

a syntactically invalid message. An element receiving this message should respond

with an error. Table 5.4 shows a SIP INVITE message with negative value for

Content-Length and also the results that received from LEX SIP for this message.

28

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.4: INVITE with Incorrect Content-Length Header

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
Max-Forwards: 254
To: sip:j.user@example.com
From: sip:caller@example.net;tag=32394234
Call-ID: ncl.0ha0isndaksdj2193423r542w35 Malformed Malformed
CSeq: 0 INVITE
Via: SIP/2.0/UDP 192.0.2.53 ;branch =
z9hG4bKkdjuw
Contact: <sip:caller@example53.example.net>
Content-Type: application/sdp
Content-Length: -999

Table 5.5: INVITE with Error in Display Name in “To” Header

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User <sip:j.user@example.com>
From: sip:caller@example.net;tag=93334
Max-Forwards: 10
Call-ID: quotbal.aksdj Malformed Malformed
Contact: <sip:caller@host59.example.net>
CSeq: 8 INVITE
Via: SIP/2.0/UDP 192.0.2.59:5050; branch =
z9hG4bKkdjuw39234
Content-Type: application/sdp
Content-Length: 153

Unterminated quoted string in display-name

SIP messages with unterminated quote in the display name are syntactically invalid

messages. An element receiving this request should return an 400 Bad Request

error. Table 5.5 shows a SIP INVITE message with an unterminated quote in the

display name of the To field and result of LEX SIP for this message.

<> enclosing Request-URI

A SIP INVITE request message should be considered invalid if the Request-URI

is enclosed within in “<>”. This message should be rejected with error as a 400

29

cap. 5 · Experiments and Results

Table 5.6: INVITE with Illegal Enclosing of Request-URI in <>

SIP Message Type LEX SIP
INVITE <sip:user@example.com> SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Table 5.7: INVITE with illegal space within Request-URI

SIP Message Type LEX SIP
INVITE sip:user@example.com; lr SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Bad Request. Table 5.6 shows a malformed INVITE request message where the

Request-Uri is enclosed with <>.

Malformed SIP Request-URI (embedded LWS)

An INVITE message with illegal LWS within the Request-URI is invalid. An

element receiving this request should respond with a 400 Bad Request. Table 5.7

shows a sample INVITE message with illegal space withing Request-URI.

Multiple SP separating Request-Line elements

An INVITE message becomes invalid if it contains illegal multiple SP characters

between elements of the start line. This type of request message can be rejected

30

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.8: INVITE with illegal (>1) SP between elements of Request
URI

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Table 5.9: INVITE with an illegal SIP Date format

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Date: Fri, 01 Jan 2010 16:00:00 EST
Content-Length: 160

as malformed. Table 5.8 shows a sample INVITE message where the Request-line

contains extra space (>1).

Invalid timezone in Date header field

An INVITE message is considered invalid if it contains a non GMT time zone in the

SIP Date header field and can be rejected as malforme. RFC 3261 [11] explicitly

defines the only acceptable timezone designation as “GMT”. “UT”, “UTC”, and

“UCT” are invalid. Table 5.9 shows a sample INVITE message with illegal SIP

date format.

31

cap. 5 · Experiments and Results

Table 5.10: INVITE with extra spaces within addr-spec “<>”

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” < sip:user@example.com
>
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Extra spaces within addr-spec “<>”

A request message is malformed if the addr-spec between “<>” contains extra

spaces. This message can be rejected with a 400 Bad Request response. Table

5.10 shows a sample SIP INVITE message where the SIP-URI in the To header

field (enclosed with <>) contains extra spaces.

Non-token characters in display-name

An request message is malformed if the display names in header fields contain

unquoted non-token characters. It is reasonable to always reject this kind of error

with a 400 Bad Request response. Table 5.11 shows an illegal SIP INVITE mes-

sage where the display names in the “To” and “From” headers contain non-token

characters but are unquoted.

Unknown Method in “CSeq” header field

A SIP message is considered malformed if it contains an unknown method name in

“CSeq” header field. Table 5.15 shows a malformed SIP INVITE message where

the “CSeq” header field contains unknown method name.

32

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.11: INVITE with an Unquoted Display Name Containg Non-
Token Characters

SIP Message Type LEX SIP
INVITE sip:t.watson@ieee.org SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com:5060;
branch=z9hG4bKkdjuw
Max-Forwards: 70
From: Bell, Alexander <sip:a.g.bell@bell-
tel.com>;tag=43

Malformed Malformed

To: Watson, Thomas
<sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: <sip:a.g.bell@bell-tel.com>

Table 5.12: INVITE with unknown method in “CSeq” header field

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 NewMethod
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

5.2.3 Invalid Message - Syntactically valid but malformed

Missing Required Header Fields

Any request message without mandatory header fields such as “Call-ID”, “From”,

“To”, “CSeq” is malformed. Table 5.13 shows a sample INVITE message with

missing mandatory header fields. An element receiving this message will respond

with a 400 Bad Request error.

33

cap. 5 · Experiments and Results

Table 5.13: INVITE with missing mandatory header fields.

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 OPTION
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Table 5.14: INVITE with Incorrect “Content-Length” Header

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 9999

v=0
o=mhandley 29739 7272939 IN IP4 192.0.2.155
s=-
c=IN IP4 192.0.2.155
t=0 0
m=audio 492170 RTP/AVP 0 12
a=rtpmap:31 LPC

Content length larger than message

A request message can be considered malformed if the Content Length is larger

than the length of the body. The receiving element should respond with a 400

Bad Request error. Table ?? shows a sample SIP INVITE message.

34

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.15: INVITE with overlarge values for scaler field

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
Max-Forwards: 300
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 36893488147419103232 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:user@host129.example.com>
;expires=280297596632815
Content-Type: application/sdp
Content-Length: 160

Request scalar fields with overlarge values

A request message with overlarge values for various scaler fields is syntactically

valid but it is a malformed one. An element receiving requests contains several

scalar header field values outside their legal range should respond with a 400 Bad

Request error. Some of the scaler fields are follows:

• CSeq sequence number is > 232−1.

• Max-Forwards value is >255.

• Expires value is > 232−1.

• Contact expires parameter value is > 232−1.

Start line and CSeq method mismatch

A request message is invalid if it contains mismatching values for the method in

the start line and the CSeq header field. Any element receiving this request will

respond with a 400 Bad Request Table 5.16 shows a sample INVITE message

which has a different method name in “CSeq” header field.

Unknown authorization scheme

A REGISTER request should be considered invalid if it contains an Authorization

header field with an unknown scheme.

35

cap. 5 · Experiments and Results

Table 5.16: INVITE with different method in “CSeq” header field

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 OPTION
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Table 5.17: REGISTER with Unknown authorization scheme

SIP Message Type LEX SIP
REGISTER sip:example.com SIP/2.0
To: sip:j.user@example.com
From: sip:j.user@example.com;tag=87321hj23128
Max-Forwards: 8
Call-ID: 0ha0isndaksdj Malformed Malformed
CSeq: 9338 REGISTER
Via: SIP/2.0/TCP
192.0.2.253;branch=z9hG4bKkdjuw
Contact: <sip:caller@host5.example.net>
Authorization: NoOneKnowsThisScheme opaque
data here
Content-Length:0

Multiple values in single value required fields

Any request message with multiple Call-ID, To, From, Max-Forwards and CSeq

values should be considered malformed. Though this type of message is syntac-

tically valid but an element receiving this request would respond with a 400 Bad

Request error. Table 5.18 shows a sample INVITE message with duplicate “To”

and “From” headers.

36

5.2 Performance Evaluation - Efficiency of LEX SIP

Table 5.18: INVITE with duplicate “To” and “From” header fields

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: “Mr.J.User” <sip:user@example.com>
From: sip:caller@example.net;tag=39291
To: “Mr.J.User” <sip:user@example.com>
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
From: sip:caller2@example.net;tag=39291
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/sdp
Content-Length: 160

Table 5.19: INVITE with multiple request-line

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/unknownformat
Content-Length: 160

INVITE sip:user@example.com SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291

Multiple SIP Request values

Any message with multiple request-line is considered malformed. Table ?? shows

a request message with multiple request line.

37

cap. 5 · Experiments and Results

Table 5.20: INVITE with unknown content type

SIP Message Type LEX SIP
INVITE sip:user@example.com SIP/2.0
To: sip:user@example.com
From: sip:caller@example.net;tag=39291
Max-Forwards: 23
Call-ID: ltgtruri.1@192.0.2.5 Malformed Malformed
CSeq: 1 INVITE
Via: SIP/2.0/UDP 192.0.2.5
Contact: <sip:caller@host5.example.net>
Content-Type: application/unknownformat
Content-Length: 160
<audio>
<pcmu port=”443”/>
</audio>

Unknown Content-Type

Table 5.20 shows a sample INVITE request message which contains a body of

unknown type. Though this request message is syntactically valid but the an

endpoint receiving this request would reject it with a 415 Unsupported Media

Type error.

38

BIBLIOGRAPHY

Bibliography

[1] C.-C. Chang and C.-J. Lin. Libsvm : A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[2] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: ker-

nels over discrete structures, and the voted perceptron. In Proceedings of the

40th Annual Meeting on Association for Computational Linguistics, ACL ’02,

pages 263–270, Stroudsburg, PA, USA, 2002. Association for Computational

Linguistics (ACL).

[3] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-

chines: and other kernel-based learning methods. Cambridge University Press,

2000.

[4] D. Crocker and P. Overell. Augmented bnf for syntax specifications: Abnf.

RFC 2234 (Proposed Standard), November 1997.

[5] T. D. C. L. Dimitris Geneiatakis, Georgios Kambourakis and S. Gritzalis.

A framework for detecting malformed messages in sip networks. Local and

Metropolitan Area Networks (LANMAN), 2005.

[6] D. Haussler. Convolution kernels on discrete structures. Technical report,

University of California, Santa Cruz, 1999. Technical Report UCSC-CRL-99-

10.

[7] H. Li, H. Lin, H. Hou, and X. Yang. An efficient intrusion detection and

prevention system against sip malformed messages attacks. Computational

Aspects of Social Networks, International Conference on, 0:69–73, 2010.

39

[8] A. Moschitti. Making tree kernels practical for natural language learning. In

Proceedings of the 11th Conference of the European Chapter of the Association

for Computational Linguistics, 2006.

[9] K. Rieck, S. Wahl, P. Laskov, P. Domschitz, and K.-R. Mller. A self-learning

system for detection of anomalous sip messages. In Principles, Systems and

Applications of IP Telecommunications. Services and Security for Next Gen-

eration Networks, Lecture Notes in Computer Science.

[10] M. Roesch. Snort ids. an open source NIDS, August 2001.

http://www.snort.org/.

[11] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. Sip: Session initiation protocol.

RFC 3261 (Proposed Standard), June 2002.

[12] R. Sparks, A. Hawrylyshen, A. Johnston, J. Rosenberg, and H. Schulzrinne.

Session initiation protocol (sip) torture test messages. RFC 4475 (Informa-

tional, May 2006.

[13] V. Vapnik, S. E. Golowich, and A. Smola. Support vector method for function

approximation, regression estimation, and signal processing. In Advances in

Neural Information Processing Systems 9, pages 281–287. MIT Press, 1996.

	Introduction
	State of the Art
	SIP Malformed Message Attack
	Kernel methods for SIP malformed message detection
	Structured representation of SIP messages
	Kernel method for SIP malformed message detection
	Tree Kernel
	Fast Tree Kernel
	Example of Tree Kernel for SIP malformed message detection

	Architecture and Implementation of SIP malformed message detection system

	Experiments and Results
	DataSet
	Performance Evaluation - Efficiency of LEX_SIP
	Valid Message - SIP torture messages
	Invalid Message - Syntectically Invalid
	Invalid Message - Syntactically valid but malformed

